Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37897006

RESUMO

Intravenously (IV) delivered BCG provides superior tuberculosis (TB) protection compared with the intradermal (ID) route in non-human primates (NHPs). We examined how γδ T cell responses changed in vivo after IV BCG vaccination of NHPs, and whether these correlated with protection against aerosol M. tuberculosis challenge. In the circulation, Vδ2 T cell populations expanded after IV BCG vaccination, from a median of 1.5% (range: 0.8-2.3) of the CD3+ population at baseline, to 5.3% (range: 1.4-29.5) 4 weeks after M. tb, and were associated with TB protection. This protection was related to effector and central memory profiles; homing markers; and production of IFN-γ, TNF-α and granulysin. In comparison, Vδ2 cells did not expand after ID BCG, but underwent phenotypic and functional changes. When Vδ2 responses in bronchoalveolar lavage (BAL) samples were compared between routes, IV BCG vaccination resulted in highly functional mucosal Vδ2 cells, whereas ID BCG did not. We sought to explore whether an aerosol BCG boost following ID BCG vaccination could induce a γδ profile comparable to that induced with IV BCG. We found evidence that the aerosol BCG boost induced significant changes in the Vδ2 phenotype and function in cells isolated from the BAL. These results indicate that Vδ2 population frequency, activation and function are characteristic features of responses induced with IV BCG, and the translation of responses from the circulation to the site of infection could be a limiting factor in the response induced following ID BCG. An aerosol boost was able to localise activated Vδ2 populations at the mucosal surfaces of the lung. This vaccine strategy warrants further investigation to boost the waning human ID BCG response.

2.
Front Immunol ; 14: 1246826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881438

RESUMO

Tuberculosis remains a major health threat globally and a more effective vaccine than the current Bacillus Calmette Guerin (BCG) is required, either to replace or boost it. The Spore-FP1 mucosal vaccine candidate is based on the fusion protein of Ag85B-Acr-HBHA/heparin-binding domain, adsorbed on the surface of inactivated Bacillus subtilis spores. The candidate conferred significant protection against Mycobacterium. tuberculosis challenge in naïve guinea pigs and markedly improved protection in the lungs and spleens of animals primed with BCG. We then immunized rhesus macaques with BCG intradermally, and subsequently boosted with one intradermal and one aerosol dose of Spore-FP1, prior to challenge with low dose aerosolized M. tuberculosis Erdman strain. Following vaccination, animals did not show any adverse reactions and displayed higher antigen specific cellular and antibody immune responses compared to BCG alone but this did not translate into significant improvement in disease pathology or bacterial burden in the organs.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Cobaias , Animais , Vacina BCG , Macaca mulatta , Antígenos de Bactérias , Tuberculose/prevenção & controle , Esporos
3.
Pharmaceutics ; 14(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36559163

RESUMO

Innovative cross-over study designs were explored in non-human primate (NHP) studies to determine the value of this approach for the evaluation of drug efficacy against tuberculosis (TB). Firstly, the pharmacokinetics (PK) of each of the drugs Isoniazid (H), Rifampicin (R), Pyrazinamide (Z) and Ethambutol (E), that are standardly used for the treatment of tuberculosis, was established in the blood of macaques after oral dosing as a monotherapy or in combination. Two studies were conducted to evaluate the pharmacokinetics and pharmacodynamics of different drug combinations using cross-over designs. The first employed a balanced, three-period Pigeon design with an extra period; this ensured that treatment by period interactions and carry-over could be detected comparing the treatments HR, HZ and HRZ using H37Rv as the challenge strain of Mycobacterium tuberculosis (M. tb). Although the design accounted for considerable variability between animals, the three regimens evaluated could not be distinguished using any of the alternative endpoints assessed. However, the degree of pathology achieved using H37Rv in the model during this study was less than expected. Based on these findings, a second experiment using a classical AB/BA design comparing HE with HRZ was conducted using the M. tb Erdman strain. More extensive pathology was observed, and differences in computerized tomography (CT) scores and bacteriology counts in the lungs were detected, although due to the small group sizes, clearer differences were not distinguished. Type 1 T helper (Th1) cell response profiles were characterized using the IFN-γ ELISPOT assay and revealed differences between drug treatments that corresponded to decreases in disease burden. Therefore, the studies performed support the utility of the NHP model for the determination of PK/PD of TB drugs, although further work is required to optimize the use of cross-over study designs.

4.
J Immunol ; 209(8): 1555-1565, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36096642

RESUMO

Tuberculosis (TB) remains one of the deadliest infectious diseases worldwide, posing great social and economic burden to affected countries. Novel vaccine approaches are needed to increase protective immunity against the causative agent Mycobacterium tuberculosis (Mtb) and to reduce the development of active TB disease in latently infected individuals. Donor-unrestricted T cell responses represent such novel potential vaccine targets. HLA-E-restricted T cell responses have been shown to play an important role in protection against TB and other infections, and recent studies have demonstrated that these cells can be primed in vitro. However, the identification of novel pathogen-derived HLA-E binding peptides presented by infected target cells has been limited by the lack of accurate prediction algorithms for HLA-E binding. In this study, we developed an improved HLA-E binding peptide prediction algorithm and implemented it to identify (to our knowledge) novel Mtb-derived peptides with capacity to induce CD8+ T cell activation and that were recognized by specific HLA-E-restricted T cells in Mycobacterium-exposed humans. Altogether, we present a novel algorithm for the identification of pathogen- or self-derived HLA-E-presented peptides.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antígenos de Bactérias , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe I , Humanos , Peptídeos
5.
F1000Res ; 10: 257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976866

RESUMO

The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Animais , Cobaias , Leucócitos Mononucleares , Camundongos , Primatas , Tuberculose/prevenção & controle
6.
Front Immunol ; 12: 754589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707617

RESUMO

In many countries where tuberculosis (TB) is endemic, the Bacillus Calmette-Guérin (BCG) vaccine is given as close to birth as possible to protect infants and children from severe forms of TB. However, BCG has variable efficacy and is not as effective against adult pulmonary TB. At present, most animal models used to study novel TB vaccine candidates rely on the use of adult animals. Human studies show that the infant immune system is different to that of an adult. Understanding how the phenotypic profile and functional ability of the immature host immune system compares to that of a mature adult, together with the subsequent BCG immune response, is critical to ensuring that new TB vaccines are tested in the most appropriate models. BCG-specific immune responses were detected in macaques vaccinated within a week of birth from six weeks after immunization indicating that neonatal macaques are able to generate a functional cellular response to the vaccine. However, the responses measured were significantly lower than those typically observed following BCG vaccination in adult rhesus macaques and infant profiles were skewed towards the activation and attraction of macrophages and monocytes and the synthesis in addition to release of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α. The frequency of specific immune cell populations changed significantly through the first three years of life as the infants developed into young adult macaques. Notably, the CD4:CD8 ratio significantly declined as the macaques aged due to a significant decrease in the proportion of CD4+ T-cells relative to a significant increase in CD8+ T-cells. Also, the frequency of both CD4+ and CD8+ T-cells expressing the memory marker CD95, and memory subset populations including effector memory, central memory and stem cell memory, increased significantly as animals matured. Infant macaques, vaccinated with BCG within a week of birth, possessed a significantly higher frequency of CD14+ classical monocytes and granulocytes which remained different throughout the first three years of life compared to unvaccinated age matched animals. These findings, along with the increase in monokines following vaccination in infants, may provide an insight into the mechanism by which vaccination with BCG is able to provide non-specific immunity against non-mycobacterial organisms.


Assuntos
Envelhecimento/imunologia , Vacina BCG/imunologia , Sistema Imunitário/crescimento & desenvolvimento , Imunogenicidade da Vacina , Macaca mulatta/imunologia , Animais , Animais Recém-Nascidos/imunologia , Antígenos de Bactérias/imunologia , Biomarcadores , Relação CD4-CD8 , Citocinas/sangue , Feminino , Imunidade Inata , Esquemas de Imunização , Memória Imunológica , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Interferon gama/sangue , Macaca mulatta/crescimento & desenvolvimento , Macrófagos/imunologia , Masculino , Monócitos/imunologia , Mycobacterium tuberculosis/imunologia , Especificidade da Espécie , Tuberculina/imunologia
7.
Sci Adv ; 7(37): eabg7996, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516768

RESUMO

There is an urgent requirement for safe and effective vaccines to prevent COVID-19. A concern for the development of new viral vaccines is the potential to induce vaccine-enhanced disease (VED). This was reported in several preclinical studies with both SARS-CoV-1 and MERS vaccines but has not been reported with SARS-CoV-2 vaccines. We have used ferrets and rhesus macaques challenged with SARS-CoV-2 to assess the potential for VED in animals vaccinated with formaldehyde-inactivated SARS-CoV-2 (FIV) formulated with Alhydrogel, compared to a negative control vaccine. We showed no evidence of enhanced disease in ferrets or rhesus macaques given FIV except for mild transient enhanced disease seen 7 days after infection in ferrets. This increased lung pathology was observed at day 7 but was resolved by day 15. We also demonstrate that formaldehyde treatment of SARS-CoV-2 reduces exposure of the spike receptor binding domain providing a mechanistic explanation for suboptimal immunity.

8.
Vaccines (Basel) ; 9(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34579182

RESUMO

This pilot study aimed to determine the utility of a cynomolgus macaque model of coinfection with simian immunodeficiency virus (SIV) for the assessment of vaccines designed to prevent reactivation of TB. Following infection caused by aerosol exposure to an ultralow dose of Mycobacterium tuberculosis (M. tb), data trends indicated that subsequent coinfection with SIVmac32H perturbed control of M. tb infection as evidenced by the increased occurrence of progressive disease in this group, higher levels of pathology and increased frequency of progressive tuberculous granulomas in the lung. BCG vaccination led to improved control of TB-induced disease and lower viral load in comparison to unvaccinated coinfected animals. The M. tb-specific IFNγ response after exposure to M. tb, previously shown to be associated with bacterial burden, was lower in the BCG-vaccinated group than in the unvaccinated groups. Levels of CD4+ and CD8+ T cells decreased in coinfected animals, with counts recovering more quickly in the BCG-vaccinated group. This pilot study provides proof of concept to support the use of the model for evaluation of interventions against reactivated/exacerbated TB caused by human immunodeficiency virus (HIV) infection.

9.
Vaccine ; 39(34): 4885-4894, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34253420

RESUMO

Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induced both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 × 106 pfu) via the intranasal and intratracheal routes we observed significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 was associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provided no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
10.
Commun Biol ; 4(1): 915, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312487

RESUMO

Vaccines against SARS-CoV-2 are urgently required, but early development of vaccines against SARS-CoV-1 resulted in enhanced disease after vaccination. Careful assessment of this phenomena is warranted for vaccine development against SARS CoV-2. Here we report detailed immune profiling after ChAdOx1 nCoV-19 (AZD1222) and subsequent high dose challenge in two animal models of SARS-CoV-2 mediated disease. We demonstrate in rhesus macaques the lung pathology caused by SARS-CoV-2 mediated pneumonia is reduced by prior vaccination with ChAdOx1 nCoV-19 which induced neutralising antibody responses after a single intramuscular administration. In a second animal model, ferrets, ChAdOx1 nCoV-19 reduced both virus shedding and lung pathology. Antibody titre were boosted by a second dose. Data from these challenge models on the absence of enhanced disease and the detailed immune profiling, support the continued clinical evaluation of ChAdOx1 nCoV-19.


Assuntos
Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , ChAdOx1 nCoV-19 , Furões , Macaca mulatta
11.
Sci Rep ; 11(1): 8810, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893359

RESUMO

Rhesus (Macaca mulatta) and cynomolgus (Macaca fasicularis) macaques of distinct genetic origin are understood to vary in susceptibility to Mycobacterium tuberculosis, and therefore differences in their immune systems may account for the differences in disease control. Monocyte:lymphocyte (M:L) ratio has been identified as a risk factor for M. tuberculosis infection and is known to vary between macaque species. We aimed to characterise the constituent monocyte and lymphocyte populations between macaque species, and profile other major immune cell subsets including: CD4+ and CD8+ T-cells, NK-cells, B-cells, monocyte subsets and myeloid dendritic cells. We found immune cell subsets to vary significantly between macaque species. Frequencies of CD4+ and CD8+ T-cells and the CD4:CD8 ratio showed significant separation between species, while myeloid dendritic cells best associated macaque populations by M. tuberculosis susceptibility. A more comprehensive understanding of the immune parameters between macaque species may contribute to the identification of new biomarkers and correlates of protection.


Assuntos
Suscetibilidade a Doenças/imunologia , Macaca fascicularis/imunologia , Macaca mulatta/imunologia , Tuberculose/imunologia , Animais , Imunofenotipagem , Subpopulações de Linfócitos , Estudos Retrospectivos , Especificidade da Espécie
12.
Nat Commun ; 12(1): 1260, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627662

RESUMO

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Pulmão/patologia , Pulmão/virologia , Animais , Modelos Animais de Doenças , Feminino , Imunidade Celular/fisiologia , Interferon gama/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Pandemias , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
13.
NPJ Vaccines ; 6(1): 3, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397986

RESUMO

We present a non-human primate mycobacterial growth inhibition assay (MGIA) using in vitro blood or cell co-culture with the aim of refining and expediting early tuberculosis vaccine testing. We have taken steps to optimise the assay using cryopreserved peripheral blood mononuclear cells, transfer it to end-user institutes, and assess technical and biological validity. Increasing cell concentration or mycobacterial input and co-culturing in static 48-well plates compared with rotating tubes improved intra-assay repeatability and sensitivity. Standardisation and harmonisation efforts resulted in high consistency agreements, with repeatability and intermediate precision <10% coefficient of variation (CV) and inter-site reproducibility <20% CV; although some systematic differences were observed. As proof-of-concept, we demonstrated ability to detect a BCG vaccine-induced improvement in growth inhibition in macaque samples, and a correlation between MGIA outcome and measures of protection from in vivo disease development following challenge with either intradermal BCG or aerosol/endobronchial Mycobacterium tuberculosis (M.tb) at a group and individual animal level.

14.
NPJ Vaccines ; 6(1): 4, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397991

RESUMO

A single intradermal vaccination with MTBVAC given to adult rhesus macaques was well tolerated and conferred a significant improvement in outcome following aerosol exposure to M. tuberculosis compared to that provided by a single BCG vaccination. Vaccination with MTBVAC resulted in a significant reduction in M. tuberculosis infection-induced disease pathology measured using in vivo medical imaging, in gross pathology lesion counts and pathology scores recorded at necropsy, the frequency and severity of pulmonary granulomas and the frequency of recovery of viable M. tuberculosis from extrapulmonary tissues following challenge. The immune profiles induced following immunisation with MTBVAC reflect those identified in human clinical trials of MTBVAC. Evaluation of MTBVAC- and TB peptide-pool-specific T-cell cytokine production revealed a predominantly Th1 response from poly- (IFN-γ+TNF-α+IL2+) and multi-(IFN-γ+TNF-α+) functional CD4 T cells, while only low levels of Th22, Th17 and cytokine-producing CD8 T-cell populations were detected together with low-level, but significant, increases in CFP10-specific IFN-γ secreting cells. In this report, we describe concordance between immune profiles measured in clinical trials and a macaque pre-clinical study demonstrating significantly improved outcome after M. tuberculosis challenge as evidence to support the continued development of MTBVAC as an effective prophylactic vaccine for TB vaccination campaigns.

15.
Front Immunol ; 12: 801799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222355

RESUMO

The tuberculosis vaccine, Bacille Calmette-Guerin (BCG), also affords protection against non-tuberculous diseases attributable to heterologous immune mechanisms such as trained innate immunity, activation of non-conventional T-cells, and cross-reactive adaptive immunity. Aerosol vaccine delivery can target immune responses toward the primary site of infection for a respiratory pathogen. Therefore, we hypothesised that aerosol delivery of BCG would enhance cross-protective action against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and be a deployable intervention against coronavirus disease 2019 (COVID-19). Immune parameters were monitored in vaccinated and unvaccinated rhesus macaques for 28 days following aerosol BCG vaccination. High-dose SARS-CoV-2 challenge was applied by intranasal and intrabronchial instillation and animals culled 6-8 days later for assessment of viral, disease, and immunological parameters. Mycobacteria-specific cell-mediated immune responses were detected following aerosol BCG vaccination, but SARS-CoV-2-specific cellular- and antibody-mediated immunity was only measured following challenge. Early secretion of cytokine and chemokine markers associated with the innate cellular and adaptive antiviral immune response was detected following SARS-CoV-2 challenge in vaccinated animals, at concentrations that exceeded titres measured in unvaccinated macaques. Classical CD14+ monocytes and Vδ2 γδ T-cells quantified by whole-blood immunophenotyping increased rapidly in vaccinated animals following SARS-CoV-2 challenge, indicating a priming of innate immune cells and non-conventional T-cell populations. However, viral RNA quantified in nasal and pharyngeal swabs, bronchoalveolar lavage (BAL), and tissue samples collected at necropsy was equivalent in vaccinated and unvaccinated animals, and in-life CT imaging and histopathology scoring applied to pulmonary tissue sections indicated that the disease induced by SARS-CoV-2 challenge was comparable between vaccinated and unvaccinated groups. Hence, aerosol BCG vaccination did not induce, or enhance the induction of, SARS-CoV-2 cross-reactive adaptive cellular or humoral immunity, although an influence of BCG vaccination on the subsequent immune response to SARS-CoV-2 challenge was apparent in immune signatures indicative of trained innate immune mechanisms and primed unconventional T-cell populations. Nevertheless, aerosol BCG vaccination did not enhance the initial clearance of virus, nor reduce the occurrence of early disease pathology after high dose SARS-CoV-2 challenge. However, the heterologous immune mechanisms primed by BCG vaccination could contribute to the moderation of COVID-19 disease severity in more susceptible species following natural infection.


Assuntos
Vacina BCG/imunologia , COVID-19/imunologia , DNA Viral/análise , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Imunidade Adaptativa , Aerossóis , Animais , Reações Cruzadas , Modelos Animais de Doenças , Humanos , Imunidade Heteróloga , Imunidade Inata , Imunomodulação , Ativação Linfocitária , Macaca mulatta , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Vacinação
16.
Pharmaceutics ; 12(5)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344890

RESUMO

Ten million cases of tuberculosis (TB) were reported in 2018 with a further 1.5 million deaths attributed to the disease. Improved vaccination strategies are urgently required to tackle the ongoing global TB epidemic. In the absence of a validated correlate of protection, highly characterised pre-clinical models are required to assess the protective efficacy of new vaccination strategies. In this study, we demonstrate the application of a rhesus macaque ultra-low dose (ULD) aerosol M. tuberculosis challenge model for the evaluation of TB vaccination strategies by directly comparing the immunogenicity and efficacy of intradermal (ID) and aerosol BCG vaccination delivered using a portable vibrating mesh nebulizer (VMN). Aerosol- and ID-delivered Bacille Calmette-Guérin (BCG) induced comparable frequencies of IFN-γ spot forming units (SFU) measured in peripheral blood mononuclear cells (PBMCs) by ELISpot, although the induction of IFN-γ SFU was significantly delayed following aerosol immunisation. This delayed response was also apparent in an array of secreted pro-inflammatory and chemokine markers, as well as in the frequency of antigen-specific cytokine producing CD4 and CD8 T-cells measured by multi-parameter flow cytometry. Interrogation of antigen-specific memory T-cell phenotypes revealed that vaccination-induced CD4 and CD8 T-cell populations primarily occupied the central memory (TCM) and transitional effector memory (TransEM) phenotype, and that the frequency of CD8 TCM and TransEM populations was significantly higher in aerosol BCG-vaccinated animals in the week prior to M. tuberculosis infection. The total and lung pathology measured following M. tuberculosis challenge was significantly lower in vaccinated animals relative to the unvaccinated control group and pathology measured in extra-pulmonary tissues was significantly reduced in aerosol BCG-vaccinated animals, relative to the ID-immunised group. Similarly, significantly fewer viable M. tuberculosis CFU were recovered from the extra-pulmonary tissues of aerosol BCG-vaccinated macaques relative to unvaccinated animals. In this study, a rhesus macaque ULD M. tuberculosis aerosol challenge model was applied as a refined and sensitive system for the evaluation of TB vaccine efficacy and to confirm that aerosol BCG vaccination delivered by portable VMN can confer a significant level of protection that is equivalent, and by some measures superior, to intradermal BCG vaccination.

17.
Tuberculosis (Edinb) ; 108: 99-105, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29523335

RESUMO

The lack of validated immunological correlates of protection makes tuberculosis vaccine development difficult and expensive. Using intradermal bacille Calmette-Guréin (BCG) as a surrogate for aerosol Mycobacterium tuberculosis (M.tb) in a controlled human infection model could facilitate vaccine development, but such a model requires preclinical validation. Non-human primates (NHPs) may provide the best model in which to do this. Cynomolgus and rhesus macaques were infected with BCG by intradermal injection. BCG was quantified from a skin biopsy of the infection site and from draining axillary lymph nodes, by culture on solid agar and quantitative polymerase chain reaction. BCG was detected up to 28 days post-infection, with higher amounts of BCG detected in lymph nodes after high dose compared to standard dose infection. Quantifying BCG from lymph nodes of cynomolgus macaques 14 days post-high dose infection showed a significant reduction in the amount of BCG detected in the BCG-vaccinated compared to BCG-naïve animals. Demonstrating a detectable vaccine effect in the lymph nodes of cynomolgus macaques, which is similar in magnitude to that seen in an aerosol M.tb infection model, provides support for proof-of-concept of an intradermal BCG infection model and evidence to support the further evaluation of a human BCG infection model.


Assuntos
Vacina BCG/administração & dosagem , Mycobacterium bovis/efeitos dos fármacos , Tuberculose/prevenção & controle , Animais , Vacina BCG/imunologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Linfonodos/imunologia , Linfonodos/microbiologia , Macaca fascicularis , Macaca mulatta , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Pele/imunologia , Pele/microbiologia , Fatores de Tempo , Tuberculose/imunologia , Tuberculose/microbiologia
18.
Clin Vaccine Immunol ; 24(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28077441

RESUMO

Macaques play a central role in the development of human tuberculosis (TB) vaccines. Immune and challenge responses differ across macaque and human subpopulations. We used novel immunostimulation/immunodynamic modeling methods in a proof-of-concept study to determine which macaque subpopulations best predicted immune responses in different human subpopulations. Data on gamma interferon (IFN-γ)-secreting CD4+ T cells over time after recent Mycobacterium bovis BCG vaccination were available for 55 humans and 81 macaques. Human population covariates were baseline BCG vaccination status, time since BCG vaccination, gender, and the monocyte/lymphocyte cell count ratio. The macaque population covariate was the colony of origin. A two-compartment mathematical model describing the dynamics of the IFN-γ T cell response after BCG vaccination was calibrated to these data using nonlinear mixed-effects methods. The model was calibrated to macaque and human data separately. The association between subpopulations and the BCG immune response in each species was assessed. The macaque subpopulations that best predicted immune responses in different human subpopulations were identified using Bayesian information criteria. We found that the macaque colony and the human baseline BCG status were significantly (P < 0.05) associated with the BCG-induced immune response. For humans who were BCG naïve at baseline, Indonesian cynomolgus macaques and Indian rhesus macaques best predicted the immune response. For humans who had already been BCG vaccinated at baseline, Mauritian cynomolgus macaques best predicted the immune response. This work suggests that the immune responses of different human populations may be best modeled by different macaque colonies, and it demonstrates the potential utility of immunostimulation/immunodynamic modeling to accelerate TB vaccine development.


Assuntos
Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Descoberta de Drogas/métodos , Voluntários Saudáveis , Interferon gama/metabolismo , Mycobacterium bovis/imunologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Macaca , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Adulto Jovem
19.
Tuberculosis (Edinb) ; 96: 1-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26786648

RESUMO

Well characterised animal models that can accurately predict efficacy are critical to the development of an improved TB vaccine. The use of high dose challenge for measurement of efficacy in Non-human primate models brings the risk that vaccines with the potential to be efficacious against natural challenge could appear ineffective and thus disregarded. Therefore, there is a need to develop a challenge regimen that is more relevant to natural human infection. This study has established that ultra-low dose infection of macaques via the aerosol route can be reproducibly achieved and provides the first description of the development of TB disease in both rhesus and cynomolgus macaques following exposure to estimated retained doses in the lung of less than 10 CFU of Mycobacterium tuberculosis. CT scanning in vivo and histopathology revealed differences in the progression and burden of disease between the two species. Rhesus macaques exhibited a more progressive disease and cynomolgus macaques showed a reduced disease burden. The ability to deliver reproducible ultra-low dose aerosols to macaques will enable the development of refined models of M. tuberculosis infection for evaluation of the efficacy of novel tuberculosis vaccines that offers increased clinical relevance and improved animal welfare.


Assuntos
Exposição por Inalação , Pulmão/microbiologia , Macaca fascicularis , Macaca mulatta , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose Pulmonar/microbiologia , Aerossóis , Animais , Carga Bacteriana , Biópsia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Progressão da Doença , Interações Hospedeiro-Patógeno , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Pulmão/patologia , Masculino , Mycobacterium tuberculosis/imunologia , Especificidade da Espécie , Fatores de Tempo , Tomografia Computadorizada por Raios X , Tuberculose Pulmonar/diagnóstico por imagem , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia
20.
Tuberculosis (Edinb) ; 96: 141-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26723465

RESUMO

Non-human primates (NHP) provide a key component in the preclinical assessment pathway for new TB vaccines. In the established models, Mycobacterium tuberculosis challenge is typically delivered to airways of macaques either by aerosol or bronchoscopic instillation and therefore, an understanding of these delivery routes would facilitate the comparison of data generated from models using different challenge methods. This study compared the clinical effects, antigen-specific IFNγ response profiles and disease burden following delivery of comparable doses of M. tuberculosis to the lungs of rhesus macaques by either aerosol or bronchoscopic instillation. The outcome of infection in terms of clinical effects and overall disease burden was comparable between both routes of challenge. However, the pathology in the lungs differed as disease was localised to the site of inoculation following bronchoscopic instillation while aerosol exposure resulted in lesions being evenly distributed through the lung. Whilst the IFNγ response to PPD was similar, responses to CFP10 and ESAT6 peptide pools measured with an ex vivo ELISPOT differed with regards to responses to the N-terminal regions depending on the route of infection. Both challenge routes therefore provide valid and comparable models for evaluation of new TB vaccines, although subtle differences in host responses may occur.


Assuntos
Pulmão/microbiologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/microbiologia , Aerossóis , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Broncoscopia , Modelos Animais de Doenças , ELISPOT , Interações Hospedeiro-Patógeno , Exposição por Inalação , Interferon gama/imunologia , Interferon gama/metabolismo , Testes de Liberação de Interferon-gama , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macaca mulatta , Masculino , Mycobacterium tuberculosis/imunologia , Fatores de Tempo , Tomografia Computadorizada por Raios X , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...